Chaos, Cryptology, and the Coupled Map Lattice
 A Senior Research Project in Mathematics

Matthew Weeks

April 22, 2010
(1) Chaos

- Definition
- Logistic Map
- Lyapunov Exponent
(2) Cryptology
- Definitions
- Comparison to Chaos
- One Time Pad
(3) The Coupled Map Lattice
- Form
- Behavior
(4) Cryptosystems
- Nanjing Cryptosystem
- Piecewise Attack
- Nanjing Break
- Alternatives
- Tianjin Cryptosystem

Further Research

Chaos

- Definition
- Nonperiodicity
- Sensitivity to initial conditions
- Logistic Map

$$
x_{t+1}=\alpha x_{t}\left(1-x_{t}\right)
$$

Lyapunov Exponent

- Exponential rate of separation of nearby values
- Chaos when Lyapunov exponent >0
- For one-dimensional map $x_{n+1}=f\left(x_{n}\right)$

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left|f^{\prime}\left(x_{1}\right)\right|+\left|f^{\prime}\left(x_{2}\right)\right|+\ldots+\left|f^{\prime}\left(x_{n}\right)\right|\right)
$$

- Lyapunov spectra
- Extention of Lyapunov exponent
- For spatially extended systems $x_{n}=\left(x_{n}^{1}, \ldots, x_{n}^{N}\right)$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(i \text { th eigenvalue of } J_{n-1} J_{n-2} \ldots J_{0}\right) \\
\left(J_{n}\right)_{i, j}=\frac{\partial x_{n+1}^{i}}{\partial x_{n}^{j}}
\end{gathered}
$$

Cryptology-Definitions

- Cryptosystem
- Plaintext
- Ciphertext
- Cryptography
- Cryptanalysis
- Cryptology
- PRBSG - Pseudorandom Bit Sequence Generator

Comparison to Chaos

- Similarities
- Sensitivity to initial conditions/avalanche effect
- Long-term behavior
- Pseudo-randomness
- Differences
- PRBSG's prefer integer formulae and results
- Chaotic systems usually real numbers, or floating-point approximations

One Time Pad

- Form
- Shannon's proof
- Consequences

OTP example
Ciphertext: AGMROW
key plaintext
ANTRMM ATTACK XCHNBT DEFEND

The Coupled Map Lattice-Form

- State at time t held by L lattice elements
- Based on logistic map: $f(x)=\alpha x(1-x)$
- Coupling

$$
x_{t+1}^{i}=(1-\epsilon) f\left(x_{t}^{i}\right)+\frac{\epsilon}{2 r} \sum_{k=1}^{r}\left(f\left(x_{t}^{i-k}\right)+f\left(x_{t}^{i+k}\right)\right)
$$

- Visually $(r=1)$:

Behavior

- Researched variations of
$L=16, r=1, \alpha=4$,
$\epsilon=0.5$

$\alpha=3.3$

$$
\alpha=4.0
$$

Behavior

Lyapunov Spectra

Limits of Lyapunov Spectra

- Willeboordse's Lyapunov spectra capture temporal chaos
- Linear correlation coefficient (ρ) measures spatial

$$
r=7 ; s=.5 ; \rho=1
$$

$$
r=1 ; s=.2 ; \rho \equiv .7
$$

$$
\rho=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{(n-1) s_{x} s_{y}}
$$

- Lyapunov spectra average s
- Linear correlation coefficient ρ between $x_{n}(1)$ and $x_{n}(2)$

Behavior

Distribution of elements (2000 steps)

Long Term Behavior

- Long-term behavior: Chaotic
- Lyapunov spectra: 0.1-0.3

Long Term Behavior

- Long-term behavior: Chaotic Periodic
- Lyapunov spectra:
$-\infty$

Long Term Behavior

- Long-term behavior: Chaotic Periodic
- Lyapunov spectra:
$-\infty$

Period-2 behavior at $n=10000$

Long Term Behavior

- Not all L display periodic behavior
- Long term cycle length dependent on L

1	2	3	4	5	6	7	8	9	10	11	12	13
-	-	-	-	2	4	-	-	-	2	2	4	-
14	15	16	17	18	19	20	21	22	23	24	25	26
-	-	2	2	4	4	-	-	2	2	4	4	-
$-"=$	not apparently cyclic after 100000	time steps.										

Long Term Behavior

- Depends on L, initial conditions

Probability of periodic behavior - threshold $2^{-6}=0.015625$

Nanjing Cryptosystem

- Mao, Cao, and Liu (2006)
- Nanjing University of Science \& Technology
- Basic idea - Pseudorandom Number Generator for OTP
- Parameters
- $\epsilon=0.5, r=1$
- $L=16$ lattice elements
- $M=32$ (each $x_{n}(i)$ is 32 bits long)
- $V=16$ (lower 16 bits of each $x_{n}(i)$ used as output)
- Holds $L M=(16)(32)=512$ bits of internal state
- Gives $L V=(16)(16)=256$ bits of output for each block (each time n)
- Hardware implementation
- Bit extraction

Nanjing Cryptanalysis

- Impact of known plaintext
- V / M of the key visible with known plaintext over one block
- Coupling weaknesses

- $x_{n}(i)$ not sensitive to initial conditions of most elements of x_{n-1}
- Fails avalanche criterion (single bit change in input changes approximately half the output bits) and bit independence criterion (change in one bit affects bits j and k independently)
- Takes $L / 2$ steps for one lattice to affect all the others

Known Plaintext Attack

	\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}
\mathbf{X}_{n}	0.1234	0.8745	0.1936	0.6590
Output (K)	34	45	36	90
Plaintext (P)	72	73	84	88
	MESSAGE START		SECRET	STUFF
Ciphertext	06	18	10	78
$\left(C, C_{i} \equiv K_{i}+P_{i}\right)$				
Known Plaintext	72	73		$?$
	MESSAGE START	$?$	$?$	
Known Output	34	45		
$\left(K_{i} \equiv C_{i}-P_{i}\right)$				
Known \mathbf{X}_{n}	$0 . X X 34$	$0 . X X 45$	$0 . X X X X$	0. XXXX

Nanjing Piecewise Attack

- Known 32 byte (256 bit) plaintext block gives lower 16 bits of each $x_{n}(i)$ with recommended $L=16 M=32 V=16$
- Attack with at least two known-plaintext blocks starting at $n=1$:
- Brute-force upper 16 bits of $x_{1}(1), x_{1}(2), x_{1}(3)$, that is, $x_{1}(1-3)$ checking against lower 16 bits of $x_{2}(2)$ to reduce the possibilities of those three (only about 1 in each $2^{16}=65536$ remains)
- Find reduced set of possible $x_{1}(2-3)$, then $x_{1}(3-5)$, then $x_{1}(1-5)$

Nanjing Break

- Implementation details
- Optimized implementation
- Distributed computation
- Performance:

- About 8 hours on 100-200 cores for full break

Nanjing Reverse Breaking

- Can obtain previous blocks given one known block
- Solve linear system of equations with Gaussian elimination:

$$
\begin{gathered}
\frac{1}{2} f_{n}(i)+\frac{1}{4} f_{n}(i-1)+\frac{1}{4} f_{n}(i+1)=x_{n+1}(i) \\
\frac{1}{2} f_{n}(i+1)+\frac{1}{4} f_{n}(i)+\frac{1}{4} f_{n}(i+2)=x_{n+1}(i+1)
\end{gathered}
$$

... (L equations, L variables)

- Might not be invertible, but will reduce search space
- Find each $x_{n}(i)$ from $f_{n}(i)$

$$
f^{-1}(x)=(4 \pm \sqrt{16-16 x}) / 2 x
$$

- Two solutions - must check both

Alternatives

- Increase L to increase internal state size
- Piecewise attack still succeeds
- Only putting together possibilities for first three and first five is slow
- Increase r to stop piecewise attack
- Causes excessive synchronization of lattice elements
- $x_{n}(1) \approx x_{n}(2) \ldots$

Synchronization. Long term behavior with $r=7, L=16$.

Alternatives

- Iterate $L / 2$ times between extracting bits
- $8 x$ slower
- Still has distribution problems, and linear correlation issues
- Long term behavior still not chaotic
- Reduces to XOR cryptosystem
- Defeated by frequency analysis
- Use $L=7$ or another value that does not become cyclic
- Still has distribution problems, and linear correlation issues
- Long term still fails

Tianjin Cryptosystem

- Hui, Kai-En, and Tian-Lun (2006)
- Institute of Physics, Nankai University, Tianjin, China
- Also PRBSG for OTP
- Parameters
- $\epsilon=0.2, r=1$
- $L=64$ lattice elements
- No detailed calculation information (bit sizes)
- Bit extraction
- Reseed lattice for each block with key and separate PRBSG
- Iterate lattice 116 times
- Extract 1 bit from each element (most significant)

Tianjin Cryptosystem Analysis

- Strengths
- Designed so brute-force attacker must try more than 100 possibilities for each lattice element
- 100^{64} is secure
- Weaknesses
- But (116)(64)(20) ≈ 128000 operations to encrypt/decrypt each block of 64 bits is unrealistic
- Each key creates PRBSG with period of $2^{64} \approx 10^{19}$
- Not suitable for long term use - 64 bit RC5 key brute forced in 2002

Further Research

- Long term behavior
- Larger values of L, longer time steps for apparently chaotic values of L
- What is the pattern that defines which values of L become periodic?
- What about other values of r and ϵ ?
- New ideas for cryptographically secure PRBSG's

Summary

- Coupled Map Lattices
- Coupling can synchronize and stabilize
- Not easy to make a practical, secure cryptosystem
- Still plenty of research to be done

Works consulted:

- Yaobin Mao, Liu Cao, and Wenbo Liu. Design and FPGA Implementation of a Pseudo-Random Bit Sequence Generator Using Spatiotemoral Chaos. In Communications, Circuits and Systems Proceedings, 2006 International Conference on.
- MA Hui, ZHU Kai-En, and CHEN Tian-Lun. A Cryptographic Scheme Based on Spatiotemporal Chaos of Coupled Map Lattices. Communications in Theoretical Physics, 45(3):477?482, 2006.
- F. H. Willeboordse. The Spatial Logistic Map as a Simple Prototype for Spatiotemporal Chaos. Chaos, 13, 2003.
- Distributed.net. Distributed.net completes rc5-64 project. (list announcement) 2002.

