Chaos, Cryptology, and the Coupled Map Lattice A Senior Research Project in Mathematics

Matthew Weeks

April 22, 2010

Chaos, Cryptology, and the Coupled Map La

- Chaos
 - Definition
 - Logistic Map
 - Lyapunov Exponent
- Cryptology
 - Definitions
 - Comparison to Chaos
 - One Time Pad
- The Coupled Map Lattice
 - Form
 - Behavior
- Cryptosystems
 - Nanjing Cryptosystem
 - Piecewise Attack
 - Nanjing Break
 - Alternatives
 - Tianjin Cryptosystem
- Further Research

Chaos

- Definition
 - Nonperiodicity
 - Sensitivity to initial conditions
- Logistic Map

$$x_{t+1} = \alpha x_t \left(1 - x_t \right)$$

Lyapunov Exponent

- Exponential rate of separation of nearby values
- Chaos when Lyapunov exponent > 0
- For one-dimensional map $x_{n+1} = f(x_n)$

$$\lim_{n\to\infty}\frac{1}{n}\left(\left|f'(x_1)\right|+\left|f'(x_2)\right|+...+\left|f'(x_n)\right|\right)$$

- Lyapunov spectra
 - Extention of Lyapunov exponent
 - For spatially extended systems $x_n = (x_n^1, ..., x_n^N)$

$$\lim_{n\to\infty} \frac{1}{n} \ln (i \text{th eigenvalue of } J_{n-1}J_{n-2}...J_0)$$

$$(J_n)_{i,j} = \frac{\partial x_{n+1}^i}{\partial x_n^j}$$

Cryptology-Definitions

- Cryptosystem
- Plaintext
- Ciphertext
- Cryptography
- Cryptanalysis
- Cryptology
- PRBSG Pseudorandom Bit Sequence Generator

Comparison to Chaos

- Similarities
 - Sensitivity to initial conditions/avalanche effect
 - Long-term behavior
 - Pseudo-randomness
- Differences
 - PRBSG's prefer integer formulae and results
 - Chaotic systems usually real numbers, or floating-point approximations

One Time Pad

- Form
- Shannon's proof
- Consequences

OTP example

Ciphertext: AGMROW key plaintext ANTRMM ATTACK XCHNBT DEFEND

The Coupled Map Lattice-Form

- State at time t held by L lattice elements
- Based on logistic map: $f(x) = \alpha x(1-x)$
- Coupling

$$x_{t+1}^{i} = (1 - \epsilon) f\left(x_{t}^{i}\right) + \frac{\epsilon}{2r} \sum_{k=1}^{r} \left(f\left(x_{t}^{i-k}\right) + f\left(x_{t}^{i+k}\right)\right)$$

• Visually (r = 1):

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Behavior

• Researched variations of $L=16, r=1, \alpha=4,$ $\epsilon=0.5$

→ロト →回ト → 重ト → 重 → りへ○

Behavior

Lyapunov Spectra

Limits of Lyapunov Spectra

- Willeboordse's Lyapunov spectra capture temporal chaos
- Linear correlation coefficient (ρ) measures spatial

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}$$

- Lyapunov spectra average s
- Linear correlation coefficient ρ between $x_n(1)$ and $x_n(2)$

$$r = 7$$
; $s = .5$; $\rho = 1$

$$r=1$$
; $s=2$; $\rho=7$

Behavior

Distribution of elements (2000 steps)

- Long-term behavior: Chaotic
- Lyapunov spectra: 0.1-0.3

Time Chaotic behavior at n = 2000

- Long-term
 behavior: Chaotic
 Periodic
- Lyapunov spectra:

 $-\infty$

Time Period-2 behavior at n = 65530

- Long-term behavior: Chaotic Periodic
- Lyapunov spectra:

 $-\infty$

Period-2 behavior at n = 10000

- Not all *L* display periodic behavior
- Long term cycle length dependent on L

"-" = not apparently cyclic after 100000 time steps.

• Depends on *L*, initial conditions

Probability of periodic behavior - threshold $2^{-6} = 0.015625$

1 D L 1 D L 1 T L 1 T L 1 D L 0 D D

Nanjing Cryptosystem

- Mao, Cao, and Liu (2006)
- Nanjing University of Science & Technology
- Basic idea Pseudorandom Number Generator for OTP
- Parameters
 - $\epsilon = 0.5, r = 1$
 - L = 16 lattice elements
 - M = 32 (each $x_n(i)$ is 32 bits long)
 - V = 16 (lower 16 bits of each $x_n(i)$ used as output)
 - Holds LM = (16)(32) = 512 bits of internal state
 - Gives LV = (16)(16) = 256 bits of output for each block (each time n)
- Hardware implementation
- Bit extraction

Nanjing Cryptanalysis

- Impact of known plaintext
 - \bullet V/M of the key visible with known plaintext over one block
- Coupling weaknesses

- $x_n(i)$ not sensitive to initial conditions of most elements of x_{n-1}
- Fails avalanche criterion (single bit change in input changes approximately half the output bits) and bit independence criterion (change in one bit affects bits j and k independently)
- Takes L/2 steps for one lattice to affect all the others

Known Plaintext Attack

	X_1	\mathbf{X}_2	\mathbf{X}_3	X_4
\mathbf{X}_n	0.1234	0.8745	0.1936	0.6590
Output (K)	34	45	36	90
Plaintext (P)	72	73	84	88
	MESSAGE START		SECRET	STUFF
Ciphertext	06	18	10	78
$(C, C_i \equiv K_i + P_i)$				
Known Plaintext	72	73		
	MESSAGE START		?	?
Known Output	34	45		
$(K_i \equiv C_i - P_i)$				
Known \mathbf{X}_n	0.XX34	0.XX45	0.XXXX	0.XXXX

Nanjing Piecewise Attack

- Known 32 byte (256 bit) plaintext block gives lower 16 bits of each $x_n(i)$ with recommended L = 16 M = 32 V = 16
- Attack with at least two known-plaintext blocks starting at n = 1:
- Brute-force upper 16 bits of $x_1(1)$, $x_1(2)$, $x_1(3)$, that is, $x_1(1-3)$ checking against lower 16 bits of $x_2(2)$ to reduce the possibilities of those three (only about 1 in each $2^{16} = 65536$ remains)
- Find reduced set of possible $x_1(2-3)$, then $x_1(3-5)$, then $x_1(1-5)$

Nanjing Break

- Implementation details
 - Optimized implementation
 - Distributed computation

Performance:

About 8 hours on 100-200 cores for full break

Nanjing Reverse Breaking

- Can obtain previous blocks given one known block
 - Solve linear system of equations with Gaussian elimination:

$$\frac{1}{2}f_n(i) + \frac{1}{4}f_n(i-1) + \frac{1}{4}f_n(i+1) = x_{n+1}(i)$$

$$\frac{1}{2}f_n(i+1) + \frac{1}{4}f_n(i) + \frac{1}{4}f_n(i+2) = x_{n+1}(i+1)$$

- ... (L equations, L variables)
- Might not be invertible, but will reduce search space
- Find each $x_n(i)$ from $f_n(i)$

$$f^{-1}(x) = (4 \pm \sqrt{16 - 16x})/2x$$

Two solutions - must check both

22 / 29

Alternatives

- Increase L to increase internal state size
 - Piecewise attack still succeeds
 - Only putting together possibilities for first three and first five is slow
- Increase r to stop piecewise attack
 - Causes excessive synchronization of lattice elements
 - $x_n(1) \approx x_n(2)...$

Synchronization. Long term behavior with r = 7, L = 16.

Alternatives

- Iterate L/2 times between extracting bits
 - 8x slower
 - Still has distribution problems, and linear correlation issues
 - Long term behavior still not chaotic
 - Reduces to XOR cryptosystem
 - Defeated by frequency analysis
- Use L = 7 or another value that does not become cyclic
 - Still has distribution problems, and linear correlation issues
 - Long term still fails

Tianjin Cryptosystem

- Hui, Kai-En, and Tian-Lun (2006)
- Institute of Physics, Nankai University, Tianjin, China
- Also PRBSG for OTP
- Parameters
 - $\epsilon = 0.2, r = 1$
 - L = 64 lattice elements
 - No detailed calculation information (bit sizes)
- Bit extraction
 - Reseed lattice for each block with key and separate PRBSG
 - Iterate lattice 116 times
 - Extract 1 bit from each element (most significant)

Tianjin Cryptosystem Analysis

Strengths

- Designed so brute-force attacker must try more than 100 possibilities for each lattice element
- 100⁶⁴ is secure

Weaknesses

- But (116)(64)(20) \approx 128000 operations to encrypt/decrypt each block of 64 bits is unrealistic
- \bullet Each key creates PRBSG with period of $2^{64} \approx 10^{19}$
- Not suitable for long term use 64 bit RC5 key brute forced in 2002

Further Research

- Long term behavior
 - ullet Larger values of L, longer time steps for apparently chaotic values of L
 - What is the pattern that defines which values of *L* become periodic?
 - What about other values of r and ϵ ?
- New ideas for cryptographically secure PRBSG's

Summary

- Coupled Map Lattices
- Coupling can synchronize and stabilize
- Not easy to make a practical, secure cryptosystem
- Still plenty of research to be done

Works consulted:

- Yaobin Mao, Liu Cao, and Wenbo Liu. Design and FPGA Implementation of a Pseudo-Random Bit Sequence Generator Using Spatiotemoral Chaos. In Communications, Circuits and Systems Proceedings, 2006 International Conference on.
- MA Hui, ZHU Kai-En, and CHEN Tian-Lun. A Cryptographic Scheme Based on Spatiotemporal Chaos of Coupled Map Lattices. Communications in Theoretical Physics, 45(3):477?482, 2006.
- F. H. Willeboordse. The Spatial Logistic Map as a Simple Prototype for Spatiotemporal Chaos. Chaos, 13, 2003.
- Distributed.net. Distributed.net completes rc5-64 project. (list announcement) 2002.